

Routing Protocol - BGP

BGP

□ BGP is using between Autonomous Systems

BGP(cont.)

- RFC 1771(BGPv4)
 - Support CIDR
- Transfer the AS information to reach destination
- Using TCP(Port 179)
- Incremental Update
- keepalive

Why BGP

- Suitable to large network
- Policy based routing
- Path for IN/OUT traffic
- Filtering

Autonomous System(AS)

- The group of routers and networks under same routing administration
- The need of AS
 - Maintain independence of routing policy
 - Localize the errors or faults of specific network

Autonomous System(AS)

- Interior Gateway Protocol
 - Used inside AS
 - RIP, OSPF, IS-IS, IGRP, etc
- Exterior Gateway Protocol
 - Used between ASs
 - EGP, BGP
- The scope of AS number
 - 1-65535(64512-65535 for private)

AS connection

- Single-Homed AS
 - IGP BGP AS200 🔀 AS100 \geq ISP Customer
 - Static

AS connection

AS connection

MultiHomed Transit AS

Policy-based routing

Path-vector routing

- IGP announce networks and describe the cost to reach those networks.
- BGP announces pathways and the networks that are reachable at the end of the pathway. BGP describes the pathway by using attributes which are similar to metrics.
- The adminsitrator define routing policies.

BGP Database

- Neighbor table
 - List of BGP neighbors
- BGP forwarding table
 - List of all networks learned from each neighbor
- IP routing table
 - List of best path to destination networks

BGP Message

- Open
 - Version number
 - AS number
 - Holdtime
 - Router ID
- Keepalive
- Update
- Notification
 - When error is detected

eBGP Peering

- EBGP (External BGP)
 - EBGP has peering relationship between routers in different ASs
 - EBGP is normally running on the same subnet
 - Must be connected directly
 - Exceptions : use multi-hop

iBGP Peering I

IBGP split horizon rule

 By default, routes learned via IBGP are never propagated to other IBGP peers

BGP & IGP synchrnization

Path Attributes

- Make routing policy with adjusting Path Attribute
- Types
 - Well-known mandatory
 - Origin, as-path, next-hop
 - Well-known discretionary : may not in update message
 - Local-pref
 - Optional transitive
 - Aggregator, community
 - Optional non-transitive
 - Multi-exit-disc, originator_id, cluster_list

Path Attributes(cont.)

- ORIGIN(1)
- AS_PATH(2)
- NEXT_HOP(3)
- MULTI_EXIT_DISC(4)
- LOCAL_PREF(5)
- ATOMIC_AGGREGATE(6)
- AGGREGATOR(7)
- COMMUNITY(8)
- ORIGINATOR_ID(9)
- Cluster List(10)
- WEIGHT(CISCO ONLY)

origin

- The source(origin) of a speicifi routing update.
 - IGP
 - BGP
 - Incomplete
- Priority
 - IGBP > EBGP > Incomplete

AS_Path

- The lists of AS which go through to get reach to destination
- Used for Loop detection
- Apply routing policy to each AS path

AS_Path (cont.)

AS_Path Filtering

How to block 150.15.x.x via AS200 originating from AS300 on RTA?

AS_Path Filtering(cont.)

RTA# router bgp 100 neighbor 130.13.1.6 remote-as 200 neighbor 130.13.1.6 filter-list 10 in ip as-path access-list 10 deny 300 ip as-path access-list 10 permit .*

Next hop behavior

- BGP is an AS-by-AS routing protocol, not router-by-router routing protocol
- In BGP, the next hop means the IP address to reach the next AS

Next_Hop

EBGP Next-Hop

Next_Hop (cont.)

IBGP Next-Hop

BGP Command

□Next-hop-self

Router(config-router)#

Neighbor {ip-address | peer-group-name} next-hop-self

- Forces all updates for this neighbor to be advertised with this router as the next hop
- The ip address used for the next-hop-self will be the same as the source IP address of the BGP packet.

Multi_Exit_Discriminator

Local_Preference

Weight

RTA#

router bgp 100 neighbor 203.250.14.1 remote-as 200 neighbor 203.250.14.1 weight 20000 neighbor 203.250.15.2 remote-as 300 neighbor 203.250.15.2 weight 45000

IBGP Mesh Solution

- A router running IBGP doesn't relay routing updates from another IBGP router
- This characteristic require full IBGP mesh between IBGP routers
- Problems : If there exists n peers, then [n(n-1)/2] session is needed
- Solutions
 - Route Reflector
 - Confederation

Route Reflector(RR)

- Terminology
 - Route Reflector(RR)
 - Rout Reflector Client
 - Cluster : RR + Clients
 - Cluster ID
- Configuration
 - On RR : make neighbor relationship with clients
 - On clients : make neighbor relationship with only RR

Route Reflector(cont.)

neighbor 203.250.14.1 route-reflector-client

NON-Route Reflector

- When the non-RRC send update information to RR, the RR send it only to RRC
- When RRC sends update information to RR, RR send it to other RRC and non-RRC
- When RR gets the update information through EBGP, RR sends it to all routers.

Confederation

- Make sub(mini) AS inside public AS
- It appears just one public AS outside the AS
- IBGP peering inside sub AS
- Pseudo EBGP peering between sub ASs
- Advantages
 - can minimize the number of IBGP sessions dramatically

Confederation

BGP Decision Process

- route with a reachable next hop
- route with largest weight
- route with largest local preference
- route locally originated
- route with shortest as-path

BGP Decision Process(cont.)

- Route with lowest origin type
 - igp>egp>incomplete
- Route with lowest MED
- EBGP, next Confederation External, next IBGP
- Route with nearest IGP neighbor
- Route with the lowest BGP router ID

Neighboring negotiation

- Idle
 - Searching routing table to see if a route exists to reach the neighbor
- Connect
- Opensent
 - Sent open message
- Active
 - When no response for 5sec, go back to idle
- Openconfirm
- established

Neighboring negotiation

3d21h: BGP: 10.0.0.2 went from Idle to Active 3d21h: BGP: 10.0.0.2 open active, delay 21531ms 3d21h: BGP: 10.0.0.2 open active, local address 10.0.0.1 3d21h: BGP: 10.0.0.2 open failed: Connection refused by remote host 3d21h: BGP: 10.0.0.2 passive open 3d21h: BGP: 10.0.0.2 went from Active to Idle 3d21h: BGP: 10.0.0.2 went From Idle to Connect 3d21h: BGP: 10.0.0.2 rcv message tupe 1. length (excl. header) 26 3d21h: BGP: 10.0.0.2 rcv OPEN, version 4 3d21h: BGP: 10.0.0.2 went from Connect to OpenSent 3d21h: BGP: 10.0.0.2 sending OPEN, version 4, mg as: 100 3d21h: BGP: 10.0.0.2 rcv OPEN w/ OPTION parameter len: 16 3d21h: BGP: 10.0.0.2 rcvd OPEN w/ optional parameter type 2 (Capability) len 6 3d21h: BGP: 10.0.0.2 OPEN has CAPABILITY code: 1, length 4 3d21h: BGP: 10.0.0.2 OPEN has MP_EXT CAP for afi/safi: 1/1 3d21h: BGP: 10.0.0.2 rcvd OPEN w/ optional parameter type 2 (Capability) len 2 3d21h: BGP: 10.0.0.2 OPEN has CAPABILITY code: 128, length 0 3d21h: BGP: 10.0.0.2 OPEN has ROUTE-REFRESH capability(old) for all address-families 3d21h: BGP: 10.0.0.2 rcvd OPEN w/ optional parameter type 2 (Capability) len 2 3d21h: BGP: 10.0.0.2 OPEN has CAPABILITY code: 2, length 0 3d21h: BGP: 10.0.0.2 OPEN has ROU<u>TE-REFRESH capability</u>(new) for all address-families 3d21h: BGP: 10.0.0.2 went from OpenSent to OpenConfirm > 3d21h: BGP: 10.0.0.2 send message type 1, length (incl. header) 45 3d21h: BGP: 10.0.0.2 went from OpenConfirm to Established 3d21h: %BGP-5-ADJCHANGE; neighbor 10.0.0.2 Up

BGP Operation

- Establish TCP connection
- Negotiate parameter(ex: version number) between peers
- Exchange entire routing table at initial phase
- Exchange incremental updates after initial phase
- Send keepalives to confirm connectivity between peers

BGP Operation(cont.)

- Get path information about destination prefix from internal and external BGP peers
- Register the best route in the routing table
- Can use routing policy when select the best route

BGP Command

□ Enable BGP routing protocol

Router(config)#

router bgp *autonomous-system*

□ Activate the BGP session

Router(config-router)#

neighbor *ip-address* remote-as *autonomous-system*

BGP Command(cont.)

Declare network to advertise

Router(config-router)#

network *network-number*

Reset BGP connection to update BGP information, but be cautious

Router#

clear ip bgp { * | address }

BGP Command(cont.)

□ Disable synchronization

Router(config-router)#

no synchronization

BGP Configuration Example

Router A	Router B
router bgp 100	router bgp 200
network 19.0.0.0	network 15.0.0.0
neighbor 15.1.1.2 remote-as 200	neighbor 15.1.1.1 remote-as 100

Source IP address

- Neighboring process
 - Receive BGP pkt
 - Compare the source address of the packet with the list of neighbor statements
 - Match: neighboring is established
 - No match: the packet is ignored
- The source IP address of BGP must be listed in the neighbor statement of the other routers

IBGP peering: source address

- To Establish the IBGP sesseion between R1 and R4
 - R1: ip address in the neighbor statement ?
 - R4: ip address in the neighbor statement ?

BGP Command

□ override source IP addr for BGP pkt

Router(config-router)#

Neighbor {ip-address | peer-group-name} update-source Interface-type interface-number

- Loopback interface is usually used
- Normally used only with IBGP neighbors

- Need to use loopback address for neighbor
- Static route for loopback address
- Ebgp-multihop

Router(config-router)#

Neighbor {ip-address | peer-group-name} ebgp-multihop 2

Monitoring BGP

- show ip bgp
- show ip bgp neighbor
- show ip bgp paths
- show ip bgp summary
- show ip route

BGP peering

Command

Show ip bgp summary

t3#sh ip bgp sum BGP router identifier 200.0.3.1, local AS number 100 BGP table version is 14, main routing table version 14 5 network entries using 505 bytes of memory 5 path entries using 240 bytes of memory 2 BGP path attribute entries using 120 bytes of memory 1 BGP AS-PATH entries using 24 bytes of memory 0 BGP route-map cache entries using 0 bytes of memory 0 BGP filter-list cache entries using 0 bytes of memory BGP using 889 total bytes of memory BGP activity 9/4 prefixes, 9/4 paths, scan interval 60 secs

Neighbor	V	AS	MsgRcvd	MsgSent	TblVer	InQ	OutQ	Up/Down	State/PfxRcd
10.0.0.1	4	200	72	76	14	0	0	01:05:17	1

Show ip BGP command

- Command
 - Show ip bgp

t3#sh ip bgp BGP table version is 14, local router ID is 200.0.3.1 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, r RIB-failure, S Stale Origin codes: i - IGP, e - EGP, ? - incomplete

Network	Next Hop	Metric LocPrf	Weight Path
*> 10.0.0.0	0.0.0	130	32768 ?
*> 20.0.0.0/24	10.0.0.1	0	0 200 i
*> 50.0.0.0	0.0.0.0	130	32768 ?
*> 200.0.5.0	10.0.1.2	130	32768 ?
*> 200.0.7.0	10.0.1.2	130	32768 ?

BGP session establishment

Router#

Debug ip bgp events

3d21h: BGP: 10.0.0.2 went from Idle to Active 3d21h: BGP: 10.0.0.2 open active, delay 21531ms 3d21h: BGP: 10.0.0.2 open active, local address 10.0.0.1 3d21h: BGP: 10.0.0.2 open failed: Connection refused by remote host 3d21h: BGP: 10.0.0.2 passive open 3d21h: BGP: 10.0.0.2 went from Active to Idle 3d21h: BGP: 10.0.0.2 went from Idle to Connect 3d21h: BGP: 10.0.0.2 rcv message type 1, length (excl. header) 26 3d21h: BGP: 10.0.0.2 rcv OPEN, version 4 3d21h: BGP: 10.0.0.2 went from Connect to OpenSent 3d21h: BGP: 10.0.0.2 sending OPEN, version 4, my as: 100 3d21h: BGP: 10.0.0.2 rcv OPEN w/ OPTION parameter len: 16 3d21h: BGP: 10.0.0.2 rcvd OPEN w/ optional parameter type 2 (Capability) len 6 3d21h: BGP: 10.0.0.2 OPEN has CAPABILITY code: 1. length 4 3d21h: BGP: 10.0.0.2 OPEN has MP_EXT CAP for afi/safi: 1/1 3d21h: BGP: 10.0.0.2 rcvd OPEN w/ optional parameter type 2 (Capability) len 2 3d21h: BGP: 10.0.0.2 OPEN has CAPABILITY code: 128, length 0 3d21h: BGP: 10.0.0.2 OPEN has ROUTE-REFRESH capability(old) for all address-families 3d21h: BGP: 10.0.0.2 rcvd OPEN w/ optional parameter type 2 (Capability) len 2 3d21h: BGP: 10.0.0.2 OPEN has CAPABILITY code: 2, length 0 3d21h: BGP: 10.0.0.2 OPEN has ROUTE-REFRESH capability(new) for all address-families 3d21h: BGP: 10.0.0.2 went from OpenSent to OpenConfirm 3d21h: BGP: 10.0.0.2 send message type 1, length (incl. header) 45 3d21h: BGP: 10.0.0.2 went from OpenConfirm to Established 3d21h: %BGP-5-ADJCHANGE: neighbor 10.0.0.2 Up

BGP idle and established states

- Idle
 - The router cannot find the address of the neighbor in the routing table.
 - Check for an IGP problem.
- Established
 - The proper state for BGP
 - In the Show ip bgp summary, the state column is blank or number.

BGP active state troubleshooting

- Active
 - The router sent out an open packet and is waiting for a response.
 - This state may cycle between active and idle.
 - Reasons maybe :
 - Neighbor peering with the wrong ip address
 - Neighbor does not have neighbor statement for this router
 - Neighbor does not have a route to the source ip address of the BGP open packet generated by this router